

INFLUÊNCIA DO SISTEMA DE IMPLANTAÇÃO E CULTURA INTERCALAR NO DESENVOLVIMENTO INICIAL DA CULTURA DE CANA-DE-AÇÚCAR

LUCAS DE OLIVEIRA GOMES¹

¹Fatec Mococa - Coordenadoria do CST em Agronegócio lucas.gomes@fatec.sp.gov.br

Influence of the Implantation System and Intercropping on the Initial Development of Sugarcane Cultivation

Eixo Tecnológico: Recursos Naturais

Resumo

Este trabalho tem como objetivo, em projeto desenvolvido em Regime de Jornada Integral, avaliar o desenvolvimento inicial da cana-de-acúcar implantada em sistemas de coberturas como culturas de soja, amendoim e mix de adubação verde em plantio direto (PD) e plantio convencional (PC) para contribuir com o setor sucroalcooleiro do EDR de São João da Boa Vista, região do Estado de São Paulo na qual está inserido o município de Mococa, auxiliando no planejamento de safra por meio de avaliações de desenvolvimento da cultura da canade-açúcar em relação às plantas de cobertura para adubação verde. Está sendo desenvolvido em uma área experimental do Núcleo Regional de Pesquisa de Mococa "Dr. Francisco Pereira Lima" / IAC, em uma ação conjunta dos pesquisadores do IAC que detém uma parceria com a iniciativa privada por meio da usina CoxAbengoa. Estão sendo avaliados dois sistemas de implantação, Plantio Direto e Convencional e três culturas intercalares; Soja, Amendoim e Mix de adubo verde. O delineamento experimental é de blocos casualizados em parcelas subdivididas, com 4 repetições. Serão avaliadas características físicas e químicas do solo, assim como o perfilhamento e altura de plantas. São esperados como resultados, encontrar a melhor planta de cobertura de préplantio; qual o método de plantio que tem o melhor desempenho no desenvolvimento das mudas; e mostrar também os benefícios da adubação verde na reestruturação dos solos obtendo melhorias físicas, químicas e biológicas. Esses possíveis resultados poderão trazer benefícios diretos na qualidade da produção de cana-de-açúcar contribuindo para um agronegócio mais sustentável.

Palavras-chave: Cana de Açúcar, Plantas Intercalares, Adubação Verde, Reestruturação do Solo.

Abstract

This work aims, in a project developed under a RJI, to evaluate the initial development of sugarcane planted in cover systems such as soybean, peanut and green manure mix crops in direct planting and conventional planting to contribute to the sugar-alcohol sector of the EDR of São João da Boa Vista — a region in the State of São Paulo where the municipality of Mococa is located — assisting in crop planning through evaluations of the development of sugarcane cultivation in relation to cover crops for green manure. The study will be developed in an experimental area of the Mococa Regional Research Center "Dr. Francisco Pereira Lima"/IAC, in a joint action by IAC researchers who have a partnership with the private sector through the CoxAbengoa Plant. Two implantation systems using direct and conventional planting and three intercropping cultures — soybean, peanut, and green manure mix — will be evaluated. The experimental design will be composed of randomized blocks in split plots repeated four times. Physical and chemical characteristics of the soil will be evaluated, as well as tillering and plant height. Expected results include finding the best pre-planting cover crop, determining which planting method performs best in the development seedlings, and demonstrating the benefits of green manure in soil restructuring to generate physical, chemical, and biological improvements. These potential results could bring clear benefits to the quality of sugarcane production, contributing to sustainability in agribusiness.

Key-words: Sugarcane, Intercropping Plants, Green Manure, Soil Restructuring.

1. Introdução

O setor sucroalcooleiro no Brasil tem papel importante no agronegócio, com destaque para o etanol, o açúcar e a bioenergia. A cultura da cana-de-açúcar (Saccharum sp. L.) é uma das

melhores opções para produção de combustíveis provenientes de fontes renováveis [1]. Devido a grande quantidade de áreas cultiváveis e condições edafoclimáticas favoráveis, tornaram o país o maior produtor mundial [2].

Neste contexto, o Estado de São Paulo, impulsionado pelas condições climática, disponibilidade tecnológica, na grande maioria de suas extensões, terras favoráveis ao cultivo, é considerado um estado muito competitivo na agropecuária e com um grande interesse no setor sucroenergético por ser um dos setores mais dinâmicos e promissores da agricultura brasileira, fazendo parte do cenário da agroenergia, que engloba a produção de combustível e eletricidade limpos e renováveis.

O mais importante e atual marco de progresso do setor sucroalcooleiro é a bioeletricidade. A utilização do bagaço e da palha da cana-de-açúcar na geração de energia abriu uma grande fronteira para o desenvolvimento e o fortalecimento do setor, na medida em que a bioeletricidade passa a ser considerada uma das mais importantes fontes de geração de energia elétrica [3].

Há vários anos devido ao crescimento que o setor vem mostrando, tem-se um investimento grande em pesquisas, no intuito de buscar novas alternativas de manejo, novas cultivares, novos sistemas de plantio e novas tecnologias. Com isso vem trazendo com o passar dos anos melhores produtividades a cada safra.

Dessa forma são importantes projetos apresentados para contribuir para o aperfeiçoamento dessa tecnologia e melhoria no manejo e desenvolvimento das plantas cultivadas pois não são todos os locais de plantio que possuem estrutura para irrigação e o transplante dessas mudas para locais com resíduos ou cobertura de palha na superfície do solo pode contribuir para reduzir as perdas de água, depender menos da irrigação e favorecer a fixação das plantas.

A necessidade de formar uma camada de palhada para ajudar a segurar a umidade do solo e junto restaurar a sua estrutura e fertilidade, fez com que a adubação verde, ou culturas intercalares ganhasse mais importância nos últimos anos.

Nas áreas de reforma ou de implantação do canavial de ano e meio há opção de pousio, de cultivos de ciclos rápidos ou da semeadura de adubos verdes. Decidindo-se pela adubação verde, deve-se escolher a espécie a ser plantada e, nesta avaliação, é recomendável considerar o histórico da área quanto às presenças de camada adensada, de pragas, de doenças, do tipo de planta daninha predominante, da fertilidade do solo e do tempo que o adubo verde poderá permanecer na área antecedendo ao plantio da cana-de-açúcar [4][5].

Esta prática de adubação já foi aplicada por muitos anos antes da década de 60, mas esquecida quando chegou o crescimento de máquinas e insumos agrícolas. A partir dos anos 80, utilização dessa prática é retomada e foi justamente com o uso dos adubos verdes que a produção agrícola deu um salto de qualidade. Dessa forma, a adubação verde retorna à agricultura atual com seus benefícios consolidados, melhorando as condições químicas, físicas e biológicas dos solos naturalmente pobres e conservando a qualidade dos que já são produtivos [6][7].

Além dos benefícios físicos, químicos e biológicos, as plantas intercalares utilizadas como adubação verde, realizam juntos o controle de plantas indesejadas pois ocupam o espaço que poderia ser da erva daninha atuando com uma cobertura de solo e podendo ajudar na descompactação deste solo feita pelo seu sistema radicular.

Também é promovido um controle biológico em nematoides, além de formar uma película de matéria verde ou seca sobre a superfície do solo, bloqueando a ação solar e, consequentemente, mantendo a umidade presente no local; este fator é favorável para preservar a atividade dos microrganismos do solo [8].

Estudos como esse apresentado, com a utilização de adubações verdes, são necessários para que as empresas sucroalcooleiras tenham em mãos de maneira clara qual a melhor sistema a se utilizar e qual a melhor planta de cobertura, ajudando assim em suas tomadas de decisão em seus planejamentos.

Um outro fator muito importante é a busca de produções mais sustentáveis não só na parte econômica, mas também com relação as melhorias da estrutura do solo, trazendo maior vigor, maior porosidade, aumento de matéria orgânica, dessa forma tendo também a redução de erosão e aumento da conservação de água no solo.

Este trabalho tem como objetivo, em projeto desenvolvido em Regime de jornada integral, avaliar o desenvolvimento inicial da cana-de-açúcar implantada em sistemas de coberturas como culturas de soja, amendoim e mix de adubação verde em plantio direto (PD) e plantio convencional (PC).

2. Materiais e métodos

Caracteriza-se por uma pesquisa aplicada, do tipo qualitativa de campo, que busca avaliar a diferença do desenvolvimento da cultura da cana de açúcar nos diferentes sistemas de plantio e tipos de cobertura do solo podendo beneficiar toda a sua cadeia produtiva sucroalccoleira, pois poderá trazer benefícios diretos na qualidade da produção de cana-de-açúcar e contribuindo para um agronegócio mais sustentável.

A pesquisa é realizada em uma área experimental do Núcleo Regional de Pesquisa de Mococa "Dr. Francisco Pereira Lima" em Mococa – SP em ação conjunta de pesquisadores do Centro de Cana de Ribeirão Preto e do próprio Núcleo Regional de Pesquisa de Mococa, ambos do Instituto Agronômico de Campinas (IAC), em parceria com a iniciativa privada por meio da usina COXABENGOA de São João da Boa Vista – SP.

A área experimental tem como coordenadas geográficas 21°28' S e 47°01' W e altitude média de 665 m. A precipitação média anual de 1.500 mm, com temperaturas médias máxima de 28,5°C e média mínima de 16,6°C. O clima é CwA, segundo a classificação Köpen é subtropical quente e úmido, com inverno seco.

Serão avaliados dois sistemas de implantação da cultura da cana-de-açúcar: Plantio Direto (PD) e Convencional (PC) e três culturas intercalares (tratamentos): Soja (S), Amendoim (A) e Mix de adubo verde (Mix). O delineamento experimental adotado será o de blocos casualizados em parcelas subdivididas, sendo que na parcela serão alocados os sistemas de plantio e na subparcelas as culturas intercalares, com 4 repetições.

Cada parcela experimental (Faixa de tratamento) possui aproximadamente 200 metros de comprimento e 24 m de largura, sendo destinado 50 metros de comprimento e 12 metros de largura para cada sub-parcelas divididas sistemas de plantio e repetições. Serão avaliadas características físicas e químicas do solo, assim como o perfilhamento e altura de plantas a cada 60 dias. Ao final do ciclo, a biomassa total de amostra da parcela (Kg).

3. Resultados e Discussão

No início da execução do projeto, foi necessário realizar ajustes decorrentes de fatores externos. As queimadas intensas na região de Mococa impossibilitaram a obtenção de canaviais com dimensões adequadas para a produção de mudas pré-brotadas. Diante disso, optou-se por utilizar talhões de cana-de-açúcar existentes na fazenda experimental, os quais apresentavam condições apropriadas para o aproveitamento como mudas convencionais. Dessa forma, o projeto inicial foi parcialmente modificado, adotando-se o sistema de plantio com mudas


convencionais no modelo "cantose". As demais propostas e a metodologia originalmente previstas foram mantidas.

Para se obter a palhada no momento do plantio da cana, as plantas intercalares usadas para formar a palhada foram plantadas no final do ano de 2024, para que agora no início do ano de 2025, já pudesse ser plantado a cana.

O plantio da cana foi realizado no dia 28 de fevereiro de 2025, utilizando a variedade IAC-5503 já existente na fazenda experimental no sistema de "cantose". A colheita das mudas e plantio foi realizada pela usina açucareira parceira do campo experimento e consequentemente ao projeto, acompanhada durante o tempo todo, para não correr o risco de estragar as parcelas do delineamento estatístico.

Abaixo podemos ver na Fig. 1, o croqui do projeto com as faixas de plantio das culturas intercalares, as parcelas experimentais junto com suas repetições e a área total projetada na imagem de satélite, na Fig. 2 vemos as imagens da área demarcada já com o começo dos preparos do plantio.

Fig. 1 – Croque do projeto e imagem projetada de satélite da área experimental.

Fonte: (Autor, 2025).

Fig. 2 – Início dos preparos para o plantio de cana, sendo possível ver onde foi plantio direto (PD) e onde foi o plantio convencional (PC).

Fonte: (Autor, 2025).

Na Fig. 3, é possível observar a cana que foi retirada as mudas e o local onde foi implantado o projeto. Mostrando que a distância da "Cantose" para o projeto era bem próxima e dessa forma a colheita das mudas e o plantio se deu de maneira rápida não tendo nenhum prejuízo para a qualidade das mudas plantadas.

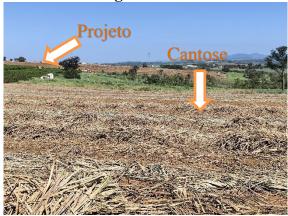


Fig. 3 – Local da "Cantose" e o local de plantio do projeto.

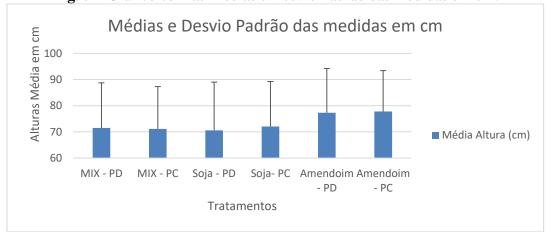
Fonte: (Autor, 2025).

Após o plantio, foram feitas amostragens do solo por tratamento para verificar e realizar as comparações físico químicas ao longo do ano, sendo feita essa primeira análise no inicio do desenvolvimento das plantas e depois outras análises ao longo do ano, assim sendo possível observar qual tratamento obteve melhora nessas comparações, outros dados começaram a ser analisados como a altura das plantas após 30 dias do plantio, que será refeita daqui para frente a cada 60 dias até o final do ano. Essas ações podem ser vistas nas imagens da Fig. 4.

Fig. 4 – Realização das amostragens de solo e medições das alturas das plantas.

Fonte: (Autor, 2025).

Após as medições das alturas das plantas os dados foram tabulados e calculados as médias e desvio padrões de cada tratamento, para se ter dados iniciais e comparativos do projeto. Nestes primeiros dados tanto na Tab. 1 quanto na Fig. 5, que mesmo ainda os valores estando muitos próximos uns dos outros, o tratamento que utilizou o amendoim como cultura intercalar, as plantas de cana se desenvolveram um pouco mais.



Tab. 1 – Médias e Desvio Padrão das medidas em cm.

Tratamentos	MIX - PD	MIX - PC	Soja - PD	Soja- PC	Amendoim - PD	Amendoim - PC
Média Altura (cm)	71,5	71,1	70,6	72,1	77,3	77,8
Desvio Padrão	17,3	16,2	18,4	17,2	16,9	15,6

Fonte: (Autor, 2025).

Fig. 5 – Gráfico com as Médias e Desvio Padrão das medidas em cm.

Fonte: (Autor, 2025).

Ainda não é possível realizar uma comparação visual e estatística que aponte diferenças significativas no desenvolvimento das plantas entre os sistemas de plantio utilizados. No entanto, ao final do experimento, será viável identificar qual sistema de cultivo intercalar apresentou melhor desempenho em termos de desenvolvimento vegetal.

4. Considerações finais

Após os ajustes necessários, a execução do projeto tem ocorrido de forma satisfatória, com registros iniciais alinhados aos objetivos propostos.

Considera-se que as leguminosas tendem a apresentar melhor desempenho no desenvolvimento das plantas; contudo, ainda não é possível determinar qual espécie se destacará. Da mesma forma, é prematuro apontar qual sistema de plantio terá o melhor desempenho, uma vez que os resultados dependerão das variações climáticas ao longo do ano.

Agradecimentos

Agradeço ao Instituto Agronômico de Campinas / Núcleo Regional de Pesquisa de Mococa, por ceder a área e apoio dos pesquisadores da unidade e incluir meu projeto ao convênio institucional firmado com a Usina COXABENGOA.

Agradeço a Fatec Mococa, pelo incentivo e apoio da Direção e Coordenação do CST em Agronegócio.

Referências

- [1] OLIVEIRA, H. P. et al. Performance of pre-sprouted sugarcane seedlings in response to the application of humic acid and plant growth-promoting bacteria. Seminário: **Ciências Agrárias**, Londrina, v. 39, n. 3, p. 1365-1370, 2018.
- [2] CONAB. Companhia Nacional de Abastecimento. Safra Brasileira de Cana-de-Açúcar, Brasília, v. 8 **Safra** 2021-22, n. 3 Terceiro levantamento, p. 1-63, 2022.
- [3] GOES, T; MARRA, R; SILVA, G. S. Setor sucroalcooleiro no Brasil situação atual e perspectivas. **Revista Política Agrícola**, Ano XVII N° 2, 2008.
- [4] OLIVEIRA M.W. et al. Nutrição mineral e adubação da cana-de-açúcar. **Informe Agropecuário**, n. 28, p.30-43. 2007.
- [5] OLIVEIRA, M. W. et al. **Sugarcane Production Systems in Small Rural Properties**. In: Multifunctionality and Impacts of Organic and Conventional Agriculture. 1 ed. Londres: INTECH Open Science, 2019. Disponível em: https://www.intechopen.com/books/multifunctionality--and-impacts-of-organic-and-conventional-agriculture/sugarcane-production-systems-in-small-rural-properties. Acesso em: 06/2024.
- [6] WILDNER, L.P. Adubação verde: conceito e modalidade de cultivo. In: FILHO, Oscar Fontão de Lima et al. **Adubação verde e plantas de cobertura no Brasil**: Fundamentos e Prática. 2ª. ed. Brasília: Embrapa, 2023. v. 2, cap. 14, p. 15-40. ISBN 978-65-86056-62-4.
- [7] ABRANCHES, M. O. et al. Contribuição da adubação verde nas características química, física e biológica do solo e sua influência na nutrição de hortaliças. **Research, Society and Development**, v. 10, n. 7, 2021.
- [8] KANEKO, P. M. S. **Influência do resíduo de plantas de adubação verde no desenvolvimento de Digitaria insularis**. 30 p. Monografia (Graduação em Agronomia). Universidade Federal da Fronteira Sul, Laranjeiras do Sul, 2021.